

Informing Climate Change and Sustainable Development Policies with Integrated Data

BILBAO. SPAIN 10-14 JUNE 2024 #UNBigData2024

# An interoperability strategy for the next generation of SEEA accounting

**Ken Bagstad<sup>1</sup>**, Ferdinando Villa<sup>2</sup>, Stefano Balbi<sup>2</sup>, Alessio Bulckaen<sup>2</sup> <sup>1</sup>U.S. Geological Survey, <sup>2</sup>Basque Centre for Climate Change







## Interoperability:

The ability of independently developed data\* or tools to integrate or work together with minimal effort

A core challenge to the global scientific community





## Interoperability:

The ability of independently developed data\* or tools to integrate or work together with minimal effort

A core challenge to the global scientific community

\*for use in computational pipelines – models & workflows should support interoperability too



## Types of interoperability

Syntactic interoperability Use of compatible data formats and communication protocols. Low bar, more limited advantages.

Semantic interoperability Data transfers where a receiving system can understand the meaning of exchanged data, reusing it appropriately. Higher bar, greater potential for automation & data/model reuse.

Heiler 1995







Local scientific resources (data, models) familiar to the modeler





















BILBAO 2024 — #UNBigData2024





BILBAO 2024 — #UNBigData2024



## Why? Faster implementation of ambitious global monitoring



BILBAO 2024 — #UNBigData2024



## Why? Faster implementation of ambitious global monitoring





## Major needs for interoperability

- Consensus & understanding of the need
- Platform-agnostic, machine actionable data & models
- Semantics (metadata descriptors) that can be navigated by AI to assemble data & models
- Reduce hidden costs (cloud egress costs, restrictions on private-sector use)

Balbi et al. Environmental Evidence (2022) 11:5 https://doi.org/10.1186/s13750-022-00258-y **Environmental Evidence** 

### COMMENTARY

**Open Access** 

Check fo

## The global environmental agenda urgently needs a semantic web of knowledge

Stefano Balbi<sup>1,2\*</sup>, Kenneth J. Bagstad<sup>3</sup>, Ainhoa Magrach<sup>1,2</sup>, Maria Jose Sanz<sup>1,2</sup>, Naikoa Aguilar-Amuchastegui<sup>4</sup>, Carlo Giupponi<sup>5</sup> and Ferdinando Villa<sup>1,2</sup>





## Building blocks for interoperability





1. SEMANTICS: a flexible, shareable, easy-to-learn language to describe scientific observations. 2. OPEN, LINKABLE DATA: machineactionable (e.g., STAC+COG/GeoServer; EPSG projected), semantically annotated data.



3. OPEN, LINKABLE MODELS: machineactionable, "Wikipedialike" shared, linked, semantically annotated models.



4. GUIDELINES ON DATA/MODEL REUSE: "guardrails" on when an Al-guided machine should reuse a particular data or model.



Semantics for complex data interoperability (Leadbetter & Vodden 2015, Villa et al. 2017, Stoica & Peckham 2019, Magana et al. 2021)

- 1. Use atomic concepts to compose more complex ones
- 2. Distinguish the phenomena & the property being measured both needed to produce a complete observation
- 3. Optional roles for 1) Roles, 2) Matrix/Realm where measurement occurred, 3) measurement methods
- 4. (Obvious) need for underlying core/upper ontology to complement domain ontologies
- 5. Reuse existing semantic resources as authorities



https://socratic.org/questions/ 582d635611ef6b13ecb11fab



## From model comparison to model interoperability

- Instead of "which model is better" (when "all models are wrong but some are useful")
- Refocus on *when* to use different models (ecoregions, spatiotemporal scales, data availability...)
- While making them & their needed data open & interoperable
- So AI can navigate complexity & turn individual knowledge into collective intelligence



Ecosystem Services 5 (2013) e27-e39

### A comparative assessment of decision-support tools for ecosystem services quantification and valuation

Kenneth J. Bagstad <sup>a,\*</sup>, Darius J. Semmens <sup>a</sup>, Sissel Waage <sup>b</sup>, Robert Winthrop <sup>c</sup>

<sup>a</sup> U.S. Geological Survey, Geosciences & Environmental Change Science Center, Denver, CO, USA
<sup>b</sup> BSR, San Francisco, CA, USA
<sup>c</sup> Socioeconomics Program, USDI-Bureau of Land Management, Washington, DC, USA







# Interoperability solutions must be trusted, user-friendly, equitable, community endorsed

Balbi et al. Environmental Evidence (2022) 11:5 https://doi.org/10.1186/s13750-022-00258-y

Environmental Evidence

### COMMENTARY

#### **Open Access**

## The global environmental agenda urgently

### **needs a semantic web of knowledge** Stefano Balbi<sup>1,2\*</sup>, Kenneth J. Bagstad<sup>3</sup>, Ainhoa Magrach<sup>1,2</sup>, Maria Jose Sanz<sup>1,2</sup>, Naikoa Aguilar-Amuchastegui<sup>4</sup>, Carlo Giupponi<sup>5</sup> and Ferdinando Villa<sup>1,2</sup>

2023 AN INTEROPERABILITY STRATEGY FOR THE NEXT GENERATION OF SEEA ACCOUNTING





Data that powers sustainable and equitable development

# Why people are essential in data interoperability

By Steven Ramage, Jenna Slotin A

August 25, 2021

https://www.data4sdgs.org/news/why-people-are-essentialdata-interoperability





## A shared vision?

### SEEA accounts & related indicators will be:

- 1. rapidly recompilable as new science emerges,
- 2. quickly produced to show the most recent trends as new annual data become available, with
- 3. robust international comparisons possible, while country-specific customization is still easily done.

This vision moves high-quality, meaningful information from scientists into the hands of decision makers, the public, and the media as quickly as possible.

2023 AN INTEROPERABILITY STRATEGY FOR THE NEXT GENERATION OF SEEA ACCOUNTING









## What you can do

- Learn more about interoperability & share with colleagues
- 2. Practice the best open-science practices you can
  - 1. Data & code repositories with common metadata keywords a good starting point
  - 2. Machine-actionable data, shared semantics, best practices for reusable code the next tier
- 3. Find someone in your organization savvy about this who can engage in this at the highest possible level: not everyone need be the expert

